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Lattice-Boltzmann algorithm for simulating thermal two-phase flow
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An algorithm is described for incorporating thermal effects into lattice-Boltzmann simulations of two-phase
flow. This algorithm is a combination of a two-distribution model for simulating single-phase thermal flow
recently proposed by the authors and the thermodynamically-based model for isothermal two-phase flow of
Swift et al. [Phys. Rev. 54, 5041(1996]. The algorithm also corrects a problem with the original single-
phase thermal flow model, which described the thermal energy flux as proportional to a gradient of the internal
energy instead of being proportional to the gradient of the temperature. For ideal-gas systems, these two
descriptions are equivalent but for nonideal systems there is a systematic discrepancy between the original
thermal model and classical hydrodynamics. The algorithm is tested on several simple problems. These include
formation of a free-standing isothermal thin liquid film, evaporation of a thin liquid film from a heated plate,
evaporation of an isolated droplet, and condensation of liquid in a channel. Where possible, the simulations are
compared against known analytic results.

PACS numbe(s): 47.55.Kf, 47.11+j, 02.70—c, 05.70.Fh

I. INTRODUCTION phase behavior directly into the equation describing the fluid.
This is the approach taken in lattice-Boltzmann simulations,
Lattice-Boltzmann algorithms have recently begun to re-but it has also been employed to a limited extent in more
ceive considerable attention as a possible alternative to cotraditional CFD context$2,3]. Using a single equation to
ventional computational fluid dynami¢€FD) for simulat- model both phases has the considerable advantage of elimi-
ing fluid flow. These algorithms have shown great promisenating front tracking. Instead, the interface is modeled as a
for simulating flow in topologically complicated geometries, continuous function of the thermodynamic properties of the
such as those encountered in porous media, and for simulatuid. The interface is no longer a mathematically discrete
ing flow in multiphase systems. This is especially true forhoundary, but is broadened out into a continuous variation in
simulations of multiphase flow, where there are few, if any fiuid properties that typically extends over several grid spac-
viable alternatives using conventional CFD approaches. Thggs. This implies that the grid being used for the simulation
standard hydrodynamic approach is to model the system &g st pe fine enough to resolve the interface, which will typi-
two or more distinct fluids separated by an infinitely thin cally be much narrower than most other features in the prob-
ma_themati_cal boundary. The behavior_ of each ﬂUid is deIem. Furthermore, since the interface can wander around
scribed using a standard hydrodynamic description and thsnywhere in the simulation, the grid must be relatively uni-

fluids are coupled to each other by appropriate boundaryorm throughout the fluid volume. This means that lattice-

conditions at the interface. The boundary conditions can als%oltzmann aloorithms. most of which have been developed
be used to develop an equation of motion for the interface, 9 ' P

The fact that the interface is itself a dynamic quantity, how—for regular grids, are not a significant disadvantage with re-

ever, creates prodigious problems from the numerical poin?pect to CFD algorithms, which can usually handie more
of view. If a conventional grid is used for each of the fluid 9€neral grid structures. _
components, then front-tracking routines are needed for ap- Several lattice Boltzmann algorithms have been devel-
propriately adjusting the grid as the interface locationoPed in the last few years for simulating multiphase and
changes and the CFD solvers need to be modified to refle@pulticomponent flows in isothermal systems. These include
the time-dependence of the grid itself. The problem is furthethe model of Shan and Chdn,5], which uses a nonlocal
complicated if the topology of the two fluids changes. Anforce in the algorithm to force the spontaneous formation of
example of this would be a drop of one fluid breaking off distinct liquid and vapor phases under appropriate condi-
and penetrating into the other fluid during a mixing opera-tions, and the model of Swiftt al.[6], which incorporates a
tion. While these processes are expected to occur in moghermodynamically-based description of the two-phase sys-
multiphase flows of practical interest, they add enormouslytem into the simulation from the start. These models have
to the complexity of the calculation. Because of this, only abeen successfully used to model a number of multiphase
relatively small number of problems have been successfullyand/or multicomponent flow problems under isothermal con-
tackled using a front-tracking approafh. ditions. However, they have not been extended to include the
An alternative to front tracking is to incorporate two- effects of temperature and therefore cannot be used to inves-
tigate systems where thermal transport limits the rate of
phase change. This includes many important problems such
*Pacific Northwest National Laboratory is operated for the U.S.as boiling, distillation, and the dynamics of phase separation.
Department of Energy by Battelle Memorial Institute under Con-Until recently, incorporating thermal behavior into the mul-
tract No. DE-AC06-76RLO 1830. tiphase models has been hampered by the lack of a suitable
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lattice Boltzmann model for describing thermal flow, even ingre suitably symmetric so that the tenS@ileeu and
single-phase systems. _ =P _.eeee areisotropic. As has been pointed out by several
This paper will describe a lattice Boltzmann algorithm g,thors, suitably isotropic lattices are known only in two and
that is capable of modeling thermal flow in two-phase systoyr dimensiong13,14. However, three-dimensional simu-
tems. The algorithm is a combination of the two-phase iSo14tions can be recovered by using a four-dimensional lattice

thermal model of Swiftet al. [6] and the two-distribution 5.4 making the system completely uniform along one of the
model for thermal flow recently proposed by the authdils  gyes.

The two-distribution model treats the internal energy as a Two sets of discretized distribution§, and F;, are as-

separate conserved scalaimilar to the densitythatis mod-  gjgned to each site. The distributidn models the transport

eled by its own discretized Boltzmann distribution. This ap-4 mass and momentum and satisfies the moment relations
proach is fairly stable and easy to implement; it can handle

arbitrary values of the Prandtl number, and an arbitrary equa-

tion of state can be used. Several other algorithms based on p=> 1, 2.1)
using only a single discretized Boltzmann distribution have = '
been limited by issues of numerical stability and the ability

to only simulate one value of the Prandtl numki&9]. b

These other algorithms also appear to be restricted to mod- pu=>, ef, (2.2)
eling fluids with an ideal gas equation of state. Recently, He, i=1

Chen, and Doolen developed a two-distribution model that

they obtained rigorously from a BGK approximation to the wherep is the mass density andis the macroscopic veloc-
Boltzmann equatiorj10]. However, this algorithm is also ity of the fluid. The distributiorF; models the movement of

restricted to systems with ideal-gas thermodynamics. This ifnternal energy through the system and satisfies the moment
a major drawback when considering multiphase flow, whergelation

the equation of state must necessarily be nonideal.

The details of the thermal two-phase model are described b
in Sec. Il. The hydrodynamic equations for the model are pe=>, Fi, (2.3
derived and used to determine the parameters that appear in i=0
the equilibrium distribution functions. The model not only
allows the formation of multiple phases, but also fixes awheree is the specific energy per unit mass.
problem in the original two-distribution thermal model re-  The distributions are updated at each time step by first
lated to the form of the thermal energy flux. Finally, the performing a collision to obtain a new set of distributions
results of simulations performed on a free-standing liquidand then displacing thg andF; along the vectog to get a
film, evaporation of a liquid film from a heated plate, evapo-new set of distributions at each site. The collisions and dis-
ration of a droplet, and condensation of vapor in a channeblacement of the distributions are summarized by the equa-

under the influence of gravity are described. tions of motion
1
II. THERMAL TWO-PHASE MODEL fi(r"'AtQ tHAL) — fi(r,t)z _ T_[fi(r,t)_ffq“’t)],
Lattice-Boltzmann simulations are an alternative to clas- ? (2.9

sical fluid dynamics that attempt to model fluid flow by
simulating the behavior of the one-particle distribution func-

tion [11,12. The original Boltzmann equation describes the Fi(r+Ate t+At)—F,(r,t)=— i[pi(m)_ Fe9(r,t)],
behavior of the one-particle distribution functiof(r,v,t), Te
wheref represents the probability that a fluid particle can be 29

found at the point at timet, moving with velocityv. If this

function is known, then local values of the mass, momentumwhere ther are restricted to sites on the lattice anis the
and temperature can be found by evaluating moments of discrete time. The collision terms in the equations of motion
The other thermodynamic properties can then be found frorhave the familiar Bhatnagar, Gross, and Krd@&GK) form

the density and temperature through the equation of statél5] and are characterized for the two distributions by the
Instead of a continuous functidnthe lattice Boltzmann dis- dimensionless relaxation parameters and 7.. Because
tribution function is discretized so that space is divided upthere is no explicit coupling between the equations of motion
into a regular lattice and the velocities are represented by #r the f; andF;, the total internal energy of the system is a
finite number of displacements to neighboring lattice sitesconserved quantity, implying that there is no viscous heating
The displacement vectors are denoted &g, wherei  in the system. For many problems of practical importance,
=1,--b, g is the displacement velocityt is the discrete the contribution from viscous heating is small. Where they
timestep, and represents the total number of displacementare non-negligible, additional enhancements to the model
directions. The magnitude of the displacement velocity iswill be required.

|e|=c and a zero displacement vecigy is included in the To completely describe the algorithm, the equilibrium dis-
set to represent particles with zero velocity. Note that in thigributions f79 and F need to be specified. Following Swift
formulationc has units of velocity. The derivations described et al.[6], the equilibrium mass-momentum distributifif! is
below assume that the lattices represented by the veetors chosen to have the form
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eq pD pD(D+2) K
fi :A+Weiaua+weiaeiﬁuauﬁ p:pO_Kp(ga(gap_E(aap)(ﬁap) (21])
pD . - .
~ opc2YalaT Eapialip, (2.6)  is used in this work for the pressure tensor. The function
Po=Po(p,€) is the ordinary equilibrium pressure for a uni-
form system given by the equation of state anid a param-
p . -
f89=Ag— 2 Ually 2.7) eter controlling the surface tension.
The spatial components are labeled by Greek indices and the IIl. DERIVATION OF THE
Einstein convention of summing over repeated indices is HYDRODYNAMIC EQUATIONS

used. The variabl® is the dimension of the lattice and the g, multiphase systems the standard Chapman-Enskog
parametersA, Ao, and thek,s will be dgtegryl_ned later.  muyltiple time-scale analysigL3] for deriving the hydrody-
Similarly, the equilibrium energy distributioR™ is chosen  namic behavior is no longer useful. The problem occurs be-

to have the form cause of the expected appearance of interfaces, which create
short-ranged changes in the density, internal energy, and ve-

F¢q=8+@e- y peD(D+2) e e U locity. These terms appear as higher-order terms in the

i bg2 Tlete 2bc* ta=ipEat Chapman-Enskog expansion where they are typically dis-

b carded.(The multiple time-scale analysis projects out the

_ peY long time-scale, long-wavelength behavior of the system.

b2 Yalat CaliatHaglialis, 28 The terms responsible for the interface do not show up be-

cause the interface is an inherently short-ranged phenojnena.
pe The Chapman-Enskog analysis does provide hydrodynamic
Fol=Bp— —z U,U,. (2.9 equations that describe the single-phase behavior of the
c . , ;
model, but does not give any information about the extra
. . terms necessary to create two coexisting phases. Instead of
Aga'”’ the parameterB, By, Ga’,andHaqu'” be deter'- the Chapman-Enskog expansion, this paper will therefore
mined later. The extra ter@,e;, in the Fi is new and is ;ge the method of successive approximations described by

used to correct the form of the thermal diffusion term. It it et al. [6] to determine the hydrodynamic equations. A
turns out that this is essential for producing a stable temperagssief outline of this method is given below, most of the de-
ture profile through the interface. The equilibrium distribu- i5i5 are provided in the Appendix.

tions are also required to satisfy the moment relati@®— This analysis begins by expanding the equations of mo-

(2.3. o o _tion aboutr andt to second order imt. Equations that
Once the equilibrium distributions have been specifiedgy yress the behavior of the unknown distributidpand F;

the lattice-Boltzmann algorithm consists of the following i, terms of the corresponding equilibrium distributions can

steps: be obtained by recursively substituting these expansions into
(i) Calculatep, u, and € at each site using the moment themselves. After truncating the expansions at second order

relations(2.1)—(2.3). in At, the following equations are obtained:
(ii) Based on the values @f and ¢, evaluate the param-
eters in the equilibrium distribution functions via some as yet 1 9
unspecified relations. a; (fi—f%= Efqur € o0,f9
(i) Evaluateff9 and F7% at each site and complete the 7o
collision step. J 1\[ o eq
(iv) Translate thef; andF; . —At E( Tp— 5) e eiaaa) fi
To find expressions for the undetermined parameters in the 1\/ o
equilibrium distributions, it is first necessary to calculate —Ate;d, LY E"’eiﬁaﬁ)ffq,
what kinds of hydrodynamic equations are generated by this
algorithm. The parameters are then determined by the re- 3.1

qguirement that the hydrodynamic equations generated by the
model match the equations of classical hydrodynamics.

To produce two-phase behavior, the hydrodynamic equa-—
tions are modified so that the scalar hydrostatic pressure is t7e

J
(Fi—Ff9)=— P+ @,daF

replaced by the pressure tensor. The pressure tensor must be P P

generalized to include off-diagonal terms that account for the —At —( Te— 5| =+ eiaaa) Frd
nonisotropic stresses that occur when an interface is intro- Jt 2]\ at

duced into the system. Following Swit al. [6], the Cahn- 1\ /g

Hilliard form [16] —Ateiaaa( T 5 ﬁ+eiﬁaﬁ) Fr

Papg=Poapt k(dap)(dgp), (2.10 (3.2
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The moment relations can be applied to E12 and  The transport coefficients, & and v appearing in the mo-
(3.13 to get equations of motion for the macroscopic con-mentum equation are given by
tinuum variablesp, u, ande. The requirement that the con-

tinuum equations generated by E¢&.1) and(3.2) match the B ( 1) dPo
i i i (=AY 1,— 5 |——, (3.15
usual hydrodynamic equations as closely as possible, as well 2] adp
as satisfying the moment relatiori2.1)—(2.3), puts con-
straints on the undetermined coefficients in the equilibrium 1) dpo
distribution functions. The constraint relations can be solved &= At( T E)I, (3.16
to get the following expressions for the coefficients:
1\ c?
Ayg=p—A . — _Z
0=p—AD, (3.3 V_At( 5553 (3.17)
D 1 1 - . . L . .
A= —2{po—f<z pﬁyﬁyp—K<—— —,>E (9,p)(d,p) |, The coefficienty is the kinematic viscosity, but the coeffi-
be Y 2 DS cients{ and ¢ have no counterparts in classical hydrodynam-
(3.9 ics and must be considered as artifacts of the lattice-
Boltzmann method. Similar terms were also found for the
= D(ZI?):;Z) k(9up)(gp), kB (3.5 ;ingle-pha;e ther'mal mpdel deyeloped by the authors and by
wift et al. in their multiphase isothermal modgs]. For a
fixed grid spacing, the time stefit can be decreased by
D(D+2) K increasingc. If 7, is simultaneously adjusted so thatre-
T K(9ap)(dap) = F; (9yp)(dyp) |, mains fixed, then the coefficientsand £ vanish in the limit
(3.6 of small time step. This occurs becausés proportional to
' c? while ¢ and £ are not. Numerical comparison of lattice-
D 1 1 Boltzmann simulations against known analytic results using
B=ra2€ po—KEy pdyd,p— K(E_ ﬁ) Zy (d,p)(dyp)|,  the single-phase thermal model suggest that the contribution

The actual physical dimension of the system is denoted b
D’ and may be smaller than the lattice dimensidnon
which the simulation is originally developed. For two-

from these extra dispersion terms is small even for larger

(3.7 values of the time stefr].
Bo=pe—Bb, (3.9 Like the original isothermal two-phase model of Swift
et al, Eq. (3.13 is not Galilean invarianf6]. For the low-
H .= €¢E (3.9 speed flows described here, this should not be a propsém
ap = =Tab For higher speed flows, Holdyat al. have developed a cor-
D 1 rection that removes the non-Galilean terms from_ the mo-
Cu=p At( Te— 5) Ppdge— kﬂaT}- (3.10  mentum equatioKat least to low order{17]. Although it has
not been done in this paper, the correction can easily be

dimensional systems, the,, are explicitly

The variablek appearing in Eq(3.21) is the thermal conduc-

_D(D+2)

4bc? K[(&xp)z_(ﬁyp)z]- (31])

Exx= ~Eyy

tivity and T is the local temperature.

To second order iiAt, the hydrodynamic equations gen-

erated by these equilibrium distributions are

applied to this algorithm and should make it possible to

Yimulate higher speed multiphase flows. The correction

scheme may also be used to eliminate the terms proportional
to andéin Eq. (3.13.

From Eq.(3.10 it is clear thatr, andk can be treated as
independent parameters. This is the approach taken in the
simulations described in this paper. The parametdras no
effect on the hydrodynamics, although it may affect the nu-
merical stability of the algorithm. Alternatively;. could be
fixed so that thé&s , terms only correct the hydrodynamics to
eliminate spurious energy flows due to gradients in the den-
sity. If the local energy density is considered to be a function
of p andT then Eq.(3.10 can be rewritten as

J +9 0 (3.12 D 1 de
Fm a ua: 1 *
gt P oaP Go=pz At(re— E)Paﬁ CudgT+ 5 g —kaaT},
d (3.18
J— + = — P ,— . -
ot PUat IpPUalls= 5P ap= 0abd5(pUp) whereCy, is the constant volume specific heat. The value of
7. can be chosen so that the two terms proportional to the
—dabUpdget dgrdg(pus) gradient of T approximately cancel
(3.13 kZAt( Te™ E) CVFTr Pas- (3.19
J i ~
2 petapeu,=aka,T. (3.14 For a single phase, wher@,;~pyd,.z, the temperature

ot

terms inG, cancel exactly and the remaining term is just
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proportional to a gradient of the density. This makes sense, sf,, df,,

since the hydrodynamic equation for the original two- -7+ O,,—yz'-: 6—hz[f1,1+f71,1+f1,71+f71,71+4f1,o

distribution model, in which the thermal energy flux is writ-

ten as the gradient of the energy, already contains the tem- +4f_j gt 4fg+4fo_1—20fg0], (4.3

perature gradient term. The only correction that is needed is

to cancel out the unecessary term proportional to a gradieryhereh is the lattice spacing and the subscripts on the func-

of the density. For an ideal-gas system, @ig vanish alto-  tjon f indicate displacements of h in the x or y directions.

gether, as expected. Becausis only a function ofT for this  This equation is obtained by generalizing a standard approxi-

case, there is no need for any hydrodynamic corrections. mation of the two-dimensional Laplacian to the four-
dimensional HCFC lattice and then projecting the result back
down to the two-dimensionad2q9 lattice. Equation(4.3)

IV. NUMERICAL IMPLEMENTATION cannot be applied directly to boundary points, because not all
The numerical implementation of this algorithm is the p(r+Ate) are defined. For this study, a reflective

straightforward in most respects. The results described aboJRPUndary condition was used to assign densities to neighbor-

have been derived assuming that the lattice has suitable isdfld Sites that reside in the interior of solid boundarits

ropy propertied13]. These include the hexagonal lattice in Poundary sites at corners or along diagonals, this is done

two dimensions and the hypercubic face-centefild@FC) sep_ara_tely for each of_the coordinate directjofihe sec_ond

lattice in four dimensions. The HCFEC lattice can be pro_derlvatlve of the density could then be calculated using Eq.

jected down onto the orthogonal lattice in two dimensions4-3)- ) o »

(d2q9 using Qian’s notatiof12]) and thed3q19 lattice in The first der|va_t|ves of th_e_s_pecmc energy and tempera-

three dimensiongThed indicates the dimension of the pro- turé that appear in the definition of th@, were handled

jected lattice andj signifies the number of independent com- Slightly differently. The contribution of th&, to the equi-

ponents in the distribution, including the zero velocity com-librium distribution functionF7 has the form

ponent) The simulations reported here were all performed

on thed2q9 two-dimensional lattice. Boundary conditions G B _ } Ate 3 et k(d
were implemented using the methods described in a previous oCia=p || Te™ 5| (PAtE I et k(Ipp)
paper[7].

The equilibrium distribution functions require the evalua-
tion of both first and second derivatives of the density and
first derivatives of the specific energy and temperature. The
first and second derivatives of the density are needed tpote that the explicit form of the pressure tensor has been
evaluate the coefficients,; andH ;. The first derivatives  substituted into Eq(3.10 in writing Eq. (4.4). The gradient
are computed using the formula terms Ate;,d,€, etc. really represent the projection of the

gradient ofe, p, and T onto the displacement vectarte, .
Instead of using Eq4.1) for the first derivatives, these are
9 o= LE W_(ﬁ) (4.)  Much better approximated as
aP EiWi i : AXa i '

k
X(aﬁ€)Ateiaaap)_EAteiaaaT . (44)

Atej,d,e=€e(r+Ate)—e(r). (4.5

where Ap/Ax,); is the single-sided finite difference ap-

proximation to the first derivative with respect to the coordi-
nate directiorx,, . It is calculated from the difference in den-

sity at the pointg andr +Ate and has the form

Similar expressions are used for the directional derivatives of
p andT. The remaining derivatives gf and e appearing in

Eq. (4.4) are evaluated using Eg&t.1) and (4.2). The ap-
proximation represented by E@.5) is essential for describ-
ing the behavior of a two-phase system; however, for single-
Ap 1 phase compressible flow, the approximation represented by
(Axa>i Ate.ﬁa[p(r+AtQ) p(r)]. (4.2 Eq. (4.1) is sufficient.

V. RESULTS
The unit vectom, points along thex coordinate axis. Only
the (Ap/Ax,); that can be evaluated and for whiehfi, is
nonzero are included in the summation in E4.1). This
form is useful for points located on boundaries whe(e
+Ate) may not be defined for alt . The weightsw; that Po= pRT
appear in Eq(4.1) reflect the total number of vectors in the 1-bp
original lattice that are projected down into the lower-
dimensional lattice. For thd2q9 lattice,w;=4 for vectors to model the thermodynamic properties of the fluid. The
along the axial directions anaj=1 for vectors along the units of temperature are chosen so that the ideal gas constant
diagonal directions. is R=1. The specific energy can be derived in a straightfor-

The second derivatives are evaluated using the followingvard way from Eq.(5.1) using the thermodynamic relation

finite-difference formula: [18]

All simulations reported here used the van der Waals
equation of state

—ap? (5.1



5300 BRUCE J. PALMER AND DAVID R. RECTOR PRE 61
ap | —| § 1 |

oU B
(W)N,;T a—T)N,V‘p* 632 [ m

where U is the total internal energy\ is the number of 15l
particles, andV is the volume of the system. The result is -

3
e=-RT—ap. (5.3

2 TR0 U S e aeeeeennea--d 0.800

Density
smmeradwa],

Equations(5.1) and (5.3) are all that are needed to com-
pletely specify the thermodynami¢gq. (5.3 can easily be i
inverted to obtainT as a function ofe and p]. The critical 0.5 [

temperature and density for the van der Waals fluid Tare I J &
=8al/(27Rb) and p.=1/(3b) [19]. The parametera andb i
for all simulations were chosen to have the valaes9/8 ol Ly 0.799
andb=1/3, which sets the critical temperature and pressure 0 20 40 60 80 100

at 1. Additional parameters that needed to be set for the Position

simulations were the relaxation parametegsand 7., the
thermal conductivityk, the surface tension parameterand
the lattice speed.

The first simulation using this model was just a simple
interface confined between two walls. The simulations were Another test of the algorithm is to check whether or not
performed on a grid of 1085 lattice sites, with periodic the normal component of the pressure tensor is constant
boundary conditions imposed on the short axis. The simulathrough the interface. This is a mechanical condition re-
tions were therefore effectively one dimensional. The simuduired by a system at equilibrium. The normal and tangential
lation volume is actually 100 lattice units in length, plus ancomponents of the pressure tensor are displayed in Fig. 2. It
extra lattice point to include the origin. Two additional lat- can be seen that the normal component of the pressure tensor
tice sites are required at either end of the simulation volumés constant through the interface while the tangential compo-
to implement boundary conditions. Reflective boundary connent shows a large deviation from uniformity. This deviation
ditions for the mass flux were applied at either end of thegives rise to the surface tension.
system and constant temperature boundary conditions were To check that the model correctly reproduces the equilib-
applied for the specific energy. The reduced temperature dtum thermodynamics of the system, a series of simulations
either end of the system was setTat 0.8 and the surface Of the liquid-vapor interface at different temperatures were
tension parameter in the Cahn-Hilliard equation was choseferformed and used to reconstruct the liquid-vapor phase
to be k=0.4. The spacing on the square gid, was setto diagram. The results of these simulations, along with the
1.0 and the time step was chosen toMte=0.2. The particle  exact result based on the equation of state, are shown in Fig.
speect is completely determined by the choice/ok andAt 3. The_ agreement between the simulations and the analytic
and is equal t&c=v2Ax/At. The factor ofv2 comes from  result is nearly perfect.
the fact that the nearest-neighbor vectors in the original four- 0.15
dimensional HCFC lattice correspond to vectors running ;
along the diagonals of the two-dimensiord2q9 lattice.
The relaxation parameters, and 7, were both set equal to
1.0 as was the thermal conductivity Enough mass was
confined in the system to force it to form a two-phase system
with an interface. The simulation was then run until all ve-
locity and thermal transients had damped out. A plot of the
resulting density and temperature profile in the vicinity of the
interface is shown in Fig. 1. The most important feature of
the temperature profile is that it is absolutely flat through the [
interface, even though the temperature is allowed to vary 0.05 1
freely and is not imposed on the system externally. Other [
simulations, in which the interface was oriented at 45° to the
grid axes, showed some deviations from a constant tempera-
ture in the vicinity of the interface but these appear to be i
small (the magnitude of the deviation was sensitive to the poo Lo v v 0 W . ]
value ofk used in the simulation, but was less than 1% in the 60 65 70 » 80
worst casg Although the dynamics of this system are not Position
very interesting, it is a rigorous test of the model. Several FIG. 2. Normal and tangential components of the pressure ten-
early versions of this algorithm were unable to simulate asor for a free-standing liquid film &E=0.8. The solid line is the
simple two-phase fluid profile. tangential component; the dotted line is the normal component.

FIG. 1. Temperature and density profiles for a free-standing
liquid film at T=0.8. The solid line is density; the dotted line is
temperature.

0.10 F

Pressure
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FIG. 3. Comparison of liquid-vapor phase diagram calculated F|G. 4. Comparison of simulated and predicted mass fluxes as a
from simulations of a free-standing filrtdoty and the analytic  function of energy flux for evaporation of a liquid film on a heated
result(solid ling). plate. The lines are the predicted fluxes, the symbols are the simu-

lated fluxes. Three different temperatures at the vapor side bound-

Simulations of a thin liquid film evaporating from a ary are shown(Circle) T=0.85. (Squar¢ T=0.80. (Diamond T
heated plate were used to verify that the the ratio of the heat0.75.
flux into a liquid-vapor interface over the mass flux out of

Epr? mterfe};:'e is ?ﬂulal tofthet rT,pecific denﬂ:/?/lpyl of vapgfrizatit;nthe end corresponding to the constant temperature-constant
e specific enthalpy for the van der Waals equation o pressure boundary can be calculated. A plot of mass flux vs

state Is heat flux should be a straight line with a slope that is equal to
the specific enthalpy. A plot of heat flux vs mass flux for
several temperatures is shown in Fig. 4. The straight lines
included in the figure are the predicted mass fluxes based on
the enthalpy of vaporization at the specified temperature. The
The specific enthalpy of vaporizatidm,, is just h,,z=h,  plot shows almost perfect agreement between the predicted
—h,, wherehg andh, are the specific enthalpies of the gas and measured mass fluxes.

and liquid phases. The simulations to test the relation be- Simulations of an evaporating drop were performed using
tween the fluxes and enthalpy of vaporization were done oa 203x< 203 size lattice. A circular boundary of radius 100
a 53x5 lattice. Periodic boundary conditions were againwas inscribed inside the original square grid and was used to
used in the short dimension so that the simulation is effecspecify both the temperature and pressure for the simulation.
tively one dimensional. The time step was increased slightlyl'he circular boundary was used to minimize the effect of the
to At=0.25, but all other parameters were the same as in thdiscrete lattice on the evaporation of the drop. The time step
previous example. A constant heat flux boundary conditiorfor this simulation was set att=0.2 and the thermal con-
was imposed at one end of the simulation cell for the energgluctivity was increased th=2.0. A liquid drop of radius 40
and a reflective boundary condition was used for the massvas equilibrated with its vapor inside the circular boundary
Constant temperature and constant pressure boundary condi- a temperature of 0.8. The density at the boundary was
tions were specified at the other end of the simulation cellnitially set equal topq=0.239, which is the equilibrium va-
and the initial distribution of mass was chosen so that aboypor density aff =0.8. The system was then equilibrated for
half the simulation cell was liquid and half the cell was va- 500 steps, after which the density at the boundary was slowly
por. The liquid half of the cell corresponded to the side withlowered over the next 500 steps to a valuggf0.200. The

the constant heat flux boundary condition and the vapor sideemperature at the boundary remained at a value of 0.8
corresponded to the constant temperature boundary condihroughout the simulation. These boundary conditions re-
tion. The initial temperature throughout the system was sesulted in the slow evaporation of the droplet over time.
equal to the same temperature used in the constant tempera-The behavior of the temperature profile at different times
ture boundary condition and the liquid and vapor densitiess shown in Fig. 5. The initial response is a rapid cooling in
were chosen to be equal to the liquid and vapor densities dhe vicinity of the interface as evaporation draws energy out
the coexistence point of the van der Waals liquid at the initialof the drop. The temperature inside the drop then continues
temperature. The pressure specified in the constant pressurecool as energy flows out of the interface due to additional
boundary condition was set equal to the vapor pressure of thevaporation at the drop surface. The initial lowering of the
van der Waals liquid at the coexistence point. Under theseonstant density boundary condition appears to result in
conditions, the liquid film evaporates steadily after the decaysome strong transients in the simulation; possibly a pressure
of some initial transients. The mass flux out of the system atvave that travels through the drop. These transients cause

3 pRT
h=€p—p=§RTp—m. (5.9
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1) —
0.800

0.795 |

0.790 |

Temperature

0.785 1 FIG. 7. Gray-scale contour plots of density and temperature for

an evaporating drop. Dark regions signify high values for density

0.780 : and low values for temperaturé.eft) density.(Right) temperature.

[ . . . . ] noted by Swiftet al. [6] in their original isothermal two-
07733 20 40 60 80 100 phase model.
Finally, results are presented for simulations of condensa-
tion in a channel under the influence of gravity. Gravity can
FIG. 5. Temperature profiles for evaporating drop at differentpe introduced into the simulation by modifying the distribu-
times. tion f; using the formula

Radial Position

the temperature inside the drop to change quickly and uni- oD
formly from a value of 0.8 to a slightly lower value of 0.798. fl=f+ 289 (5.5
4 c
The value of the temperature at the interface also appears to
rise slightly as the drop evaporates. This may be caused by a .
slight increase in the vapor density in the vicinity of the dropWherep is equal to[ p(r) + p(r +&)]/2 andg is the gravity
as the evaporation proceeds. Figure 6 shows some profiles gctor [7]. The lattice for these simulations was 20800
the density at different times. As expected, the location ofattice units in size with gravity oriented along the long axis
the interface moves inward as material from the drop evapoof the channel. The top of the channel was maintained at a
rates. constant vapor density of 0.236, zero flux boundary condi-

Contour plots of the fluid density and the temperaturetions were imposed along the sides and bottom of the chan-
profile at the end of the simulation are shown in Fig. 7. Thenel. The temperature boundary conditions were somewhat
plots show that the temperature reaches a minimum at th@ore complicated. The top of the channel was maintained at
drop surface and then gradually increases as one moves @-fixed temperature of =0.8. The first 20 lattice sites from
ther into the interior of the drop or towards the circular the top of the channel along the sides, 1-20, were also held
boundary. Some small nonunformities in the temperaturét a temperature of=0.8. The next ten lattice sites, 21-30,
contours are evident in the region near the drop surfacevere linearly ramped down fronf=0.8 to T=0.75. The
These appear to be due to small, spurious velocities thaemaining lattice sites on the sides and bottom of the channel
show up near the interface if the interface is not orientedvere held at a temperature of 0.75. Under these conditions,
along the axis directions. Similar spurious velocities weregas flows in from the top of the channel and condenses on
the sides. The initial condition consisted of a coating of lig-
uid along the sides of the channel approximately 15 units
thick, starting at the beginning of the cool portion of the
channel and extending to the bottom. The top of the film at
the transition point between hot and cold surfaces was ini-
tially rounded to prevent large transients due to surface ten-
sion effects. The bottom central portion of the channel was
initially free of liquid. The magnitude of was set to 0.0001
and the remaining parameters were the same as for the
evaporating drop simulation.

Figure 8 shows contour maps of the density and tempera-
ture distributions after 20 000 and 60 000 steps. After 20 000
steps, the liquid has started to sag down towards the bottom
and is beginning to close off the dry gap that was originally
present at the bottom of the channel. After 60 000 steps, the
dry gap has been pinched off and the bottom of the channel
is completely coated with liquid. The temperature profiles
inside the channels are also shown. The temperature profiles
vary smoothly across the interface and it is difficult to spot
exactly where the interface is, based solely on examining the
FIG. 6. Density profiles for evaporating drop at different times. temperature behavior. The vapor at the bottom of the channel

Density

Radial Position
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one moves down the channel, from 0.236 at the top to 0.272
near the bottom. To remain in equilibrium with the higher

vapor phase densities, the temperature at the liquid-gas inter-
face must increase near the bottom of the channel. This re-
sults in a general warming of the vapor phase. The energy for
heating up the vapor comes both from mechanical compres-
sion of the gas as it moves down the channel and the release
of energy at the vapor-liquid interface as the gas condenses.

VI. CONCLUSIONS

A lattice Boltzmann algorithm for simulating thermal
multiphase flows has been described and the macroscopic
hydrodynamic equations generated by the model have been
derived. Expressions for the macroscopic viscosity and ther-
mal conductivity in terms of the microscopic parameters of
the model are also obtained. The algorithm can handle an
arbitrary equation of state and correctly reproduces the form
of the heat current, even for a nonideal fluid. The model has
been tested on several systems to verify that it can reproduce
the expected behavior for thermally driven phase changes.

Simulations of a free-standing film showed that the algo-
rithm can reproduce a constant thermal profile through a
vapor-liquid interface. The free-standing film can also be
used to calculate the coexistence behavior of the fluid as a
function of temperature. This can then be compared to the
predictions based on the equation of state. For a van der
Waals fluid, complete agreement is found.

Simulations of evaporation of a thin liquid film from a
heated plate demonstrated that a thermally limited phase
change obeys the correct overall energy and mass balance
relations. The total amount of material that can evaporate
from a surface is related to the heat flux into the surface and
the enthalpy of vaporization. Simulations have verified that
the ratio of the heat flux into the interface divided by the
mass flux of gas out of the interface is equal to the specific
enthalpy of vaporization.

Simulations of an evaporating drop show an initial rapid
decrease in the surface temperature of the drop followed by a
slower development of the temperature profile both inside
and outside the drop. The radius of the drop also decreases as
evaporation proceeds. Finally, simulations of condensation
inside a channel show significant accumulation of fluid in the
channel as well as distortion and movement of the liquid-
vapor interface. These simulations demonstrate that the ther-
mal two-phase flow algorithm presented here contains the
(b) basic physics for simulating the dynamics of thermally

) driven phase changes. This includes many important pro-
FIG. 8. Gray-scale contour plots of density and temperature for

s . S cesses such as boiling, distillation, and reactions in multi-
vapor condensing in a channel. Dark regions signify high values fo

. : bhase systems.
density and low values for temperatur@op) density (left) and . ) . .
temperatureright) after 20 000 steps(Bottom) density (left) and As it stands, the thermal two-phase model is applicable to

temperaturdright) after 60 000 steps. systems near the critical point and to systems where surface
tension effects are large, such as flow in microchannels and
shows a cold spot at shorter times due to the fact that it is iporous media. The interface thickness generally increases
direct contact with the cold surface at the bottom. The temwith increasing surface tension in the Cahn-Hilliard model,
perature plot at longer time, however, indicates that the vaso a larger grid spacing can be used at higher surface ten-
por has heated up slightly in the bottom of the channel and isions. The interface also broadens as the system approaches
warmer than the vapor coming in at the top. This is due tahe critical point. For systems with low surface tension, the
the fact that for these conditions, the vapor density is quiténterface becomes narrow and the grid spacing must be made
large and the effect of gravity on the vapor phase density ismall, resulting in extremely large grids. Experience with the
significant. The density of the vapor increases noticeably amodel also suggests that problems arise at lower tempera-
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tures, where the ratio of the liquid to vapor density becomeg$-inally, summing Eq(3.2) overi gives the equation of mo-
extremely high and the interface again represents a rapition for the energy

change in density over a short distance. Lattice-Boltzmann
algorithms have recently been described which do not re- 4
quire a regular grid20,21 and open up the possibility of aprf ﬂaizl e ,Fif

using a grid with higher resolution in the region of the inter- B

face and low resolution elsewhere. Such a grid would elimi- 9 1 [ 9 b

nate the excess cells in regions outside the interface that =At{—<ré— —)(—pe+o’!a2 eiaFieq)
occur if regular grids are used. Grid refinement schemes, at 2)\ ot =1

b

such as that proposed by Filippova andned 21], are par- 10Nl b
ticularly promising in this regard. +a,| 7. 5)(521 e Fei+ ‘95;1 eiaeiBFieq”
APPENDIX (A5)

The purpose of this appendix is to provide some of the g0 Eqs.(A3)—(A5), it can be seen that to lowest order

details in the derivation of the coefficients represented by, At the hydrodynamic equations for this system are
Egs.(3.3—(3.10. Because the equilibrium distribution func- '

tions satisfy Eqs(2.1)—(2.3), the undetermined parameters

J
appearing in the equilibrium distributions must be related by EPJF d.pU,=0+O(AL), (AB)
2
p=Ab+Ay+ EaaT, (A1) J b
iPUat 952 €ialipfFI=0+ O(AD), (A7)
2
pe=Bb+Bg+H,,—~. (A2) b
D d
—pet 9,2, €.FeI=0+0O(At). (A8)
=1

This can be verified by direct calculation and using the lat-

tice vector relatior{13] Equations(A6) and (A7) can be used in the mass conserva-

b 5 tion equation(A3) to eliminate the terms on the right-hand
E e e :b_05 side. This implies that to second orderAn, the mass con-
&) SlemipT p Yapr servation equation is given by E.12. Similarly, the mo-

mentum equatiotiA4) can be reduced to

Use is also made of the property that sums over odd num-
bered products of lattice vectors vanish. Summing Bdl) 2 eq
over i and making use of the moment relations gives theﬁpljf)er‘9/3i=1 €ia€ipfi
following equation for the density:

b

_ 1\ d - eq
P (o =Atdg| 7,7 5 ﬁgleiaeiﬁfi
ﬁp aPUy= ﬁ Tp E Ep aPUq )
1 9 b o +a7,221 eiaeiﬁei ,yfieq) (Ag)
td, Tp™ z Epua—i_aﬁizl eiaei,Bfi .

Using the explicit definition off7% and the lattice vector

(A3) identity [13]

Multiplying Eq. (3.1) by & and then summing overeads to b bt
the momentum equation c
a Izl € aeiﬁei yeib‘:m(5aﬂéy§+ 5ay5[3’6+ 5a6‘sﬁy)y

b

i o fed .
at P“a+‘9/321 €i.8ipfi the sums over thé®d can be evaluated to get the expressions
b b
9 1\( o bc? bc*
— _ — || — e f€4a eq_
At|:(7t(TP 2)((9tpua’+(7,8|21 elaelﬁfl ) i=Eleiweiﬁ’fi —A D 5aﬁ+puauﬁ+ D(D+2)(E775QB

+E.stEga), (A10)

b 2
pC
e
2, €ia8igi, =575 (Ouply+ SaylipT OpyU).

A4 (A11)
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Comparing the momentum equation with Eq#9) and
(A10) suggests that the parametgksand theE,;z can be
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P b

_ Epﬁ'ﬁazl eickFieq

related to the pressure tend®y; via =
1 9 b b

:Atﬂa( Te™ E) (E;:L eiaqu+ élﬁi:E]_ eiaeiBFf‘q

be* S+ be* E ,+E
B m( st Epa)

bc?

A—+—-—E
D D(D+2) 7
( ) (A16)
=Pz (A12) L :
The sums over the distribution functions can be evaluated
_ o o _ using the definitions of th&;9 to get
This equation, in combination with E¢A1), can be used to

determineA, Ay, and thek,;. 2

b
. . . C
Equations(Al) and (A12) are not sufficient to uniquely 2 e .Fi9=peu,+G,—, (A17)
determine the quantitied, Ay, andE,z, so there is some i=1 D
flexibility in choosing one of these parameters. One possibil-
ity is to chooseA, to have the form given by E¢3.3) and to o bc? bc*
chooseE,;=Eg,. It follows from (Al) that theE,; must ;1 CiaCipgFi =B D SaptH 7D(D+2) (0apdyst SuyOps
satisfy the relation
+6a5557)+p€uat,|ﬂ. (A18)
2
> b_CE =0. (A13)  Anticipating the final results, the paramet@&g are assumed
y b 77 to be of orderAt. After dropping terms of ordeu? in the

dissipation terms, the energy equation can then be written as

To avoid confusion in the remaining derivation of the coef-
ficientsA andE 4, the summations over spatial indices have

—petd,peu,
been included explicitly. From EqA12), the E,j for « at

# B have the form given by Eq3.5). For a= g, it follows bc? 1 g bc2
from Eqg. (A12) that theE,, must also satisfy the relation = —0aGa—+At3a< Te— 5) {Epeua-i- aaTB
bc?>  2bc* (1 bc*
=" |z + ———7 (I Hggt dgH 5+ I Hge) |- (AL9
AD *Bpr2) |22 Bt Eaa D07 2) %aHast dpHas+ daHpa) | (AL9)

K Using the first-order equations, the time derivative in the
=Po~ "Ey pIydyp— 527 (dyp)(dyp) dissipation term can be rewritten as

(A14) a

T K(9ap)(9ap). _
Epfu”‘_ —€dgpUUg—€dgP s~ U,dppeUg

Simultaneously solving Eq$A13) and (A14) for A and the bc?

E,. leads to Eqs(3.4) and(3.6). - uaaﬁGﬁT + €U,dgpUg.
The equilibrium distributiorf 79 is now completely deter-

mined and the momentum equation to ordé¢rbecomes

(A20)

Using Eq.(A20) in Eq. (A19) leads to the energy equation

9 J
SrPUat dppUalip StPET dapely
)2 J 06,25 At | LI P
=_(9BPQB+AU9B(TP_E){ﬁpaﬂﬂ'ﬁpuauﬁ - aa a N &a Te 5 aBT aB 6‘9,8 af
CZ bC4
+ 555 9P (Bagly T Saylipt OpyUa) | (A15) +m(&aHBB+aBHaﬁ+aBHﬁa) : (A21)

) o o The terms of ordeu? and the terms proportional ®,, in the
The dpu,ug/dt term is second order in in the dissipation djissipation terms are of higher order and are dropped. A

term. It is assumed to be of higher order and is dropped. Thgood choice foB and theH «p IS 0 require them to satisfy

remaining time derivative oP,; can eventually be con- the relation

verted into an expression containing only spatial gradients.

However, this cannot be done until the analysis of the energy bc? bc* bc*

equation is completed. (BF " DD+2) Hyy|dapt m(HaBJF Hpa)
Using the first-order equation for the ener@8), Eq.

(A5) can be simplified to

=ePp. (A22)
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The similarity between this equation and E412) immedi- J
ately leads to the expressions given in E@7)—(3.9). The S PET dapUae=0+O(A). (A24)
energy equation can now be rewritten as
2 Because the time derivative of the pressure tensor is already
J be 1 in a dissipation term, the gradient b idered
—pEt Iopely=—3,G g+ Atd,| To— 5| Pogdge. in a dissipation term, the gradien skh,z can be considere
dt 2 to be contributing to higher order and are dropped. The pres-
(A23)  sure tensor reduces to

The dissipation term should be proportional to the gradient P~ Podas.

of temperature. This requirement leads directly to BdqL0. “p “”

The energy equation then reduces to 8314, which is the  The time derivative of the pressure can then be written as
traditional form in the absence of viscous heating.

The results for the energy equation can be used to elimi- d dPo dPo
nate the time derivative of the pressure tensor in the momen- “tPas=™~ ﬁaap“a_ e Uadat- (A25)
tum equation(A15). To lowest order imt, the energy equa-
tion is This can be combined with EgA15) to give Eq.(3.13.
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