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Lattice-Boltzmann algorithm for simulating thermal two-phase flow

Bruce J. Palmer and David R. Rector
Environmental and Molecular Sciences Laboratory, Box 999, Pacific Northwest National Laboratory,* Richland, Washington 99352

~Received 20 August 1999!

An algorithm is described for incorporating thermal effects into lattice-Boltzmann simulations of two-phase
flow. This algorithm is a combination of a two-distribution model for simulating single-phase thermal flow
recently proposed by the authors and the thermodynamically-based model for isothermal two-phase flow of
Swift et al. @Phys. Rev. E54, 5041 ~1996!#. The algorithm also corrects a problem with the original single-
phase thermal flow model, which described the thermal energy flux as proportional to a gradient of the internal
energy instead of being proportional to the gradient of the temperature. For ideal-gas systems, these two
descriptions are equivalent but for nonideal systems there is a systematic discrepancy between the original
thermal model and classical hydrodynamics. The algorithm is tested on several simple problems. These include
formation of a free-standing isothermal thin liquid film, evaporation of a thin liquid film from a heated plate,
evaporation of an isolated droplet, and condensation of liquid in a channel. Where possible, the simulations are
compared against known analytic results.

PACS number~s!: 47.55.Kf, 47.11.1j, 02.70.2c, 05.70.Fh
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I. INTRODUCTION

Lattice-Boltzmann algorithms have recently begun to
ceive considerable attention as a possible alternative to
ventional computational fluid dynamics~CFD! for simulat-
ing fluid flow. These algorithms have shown great prom
for simulating flow in topologically complicated geometrie
such as those encountered in porous media, and for sim
ing flow in multiphase systems. This is especially true
simulations of multiphase flow, where there are few, if an
viable alternatives using conventional CFD approaches.
standard hydrodynamic approach is to model the system
two or more distinct fluids separated by an infinitely th
mathematical boundary. The behavior of each fluid is
scribed using a standard hydrodynamic description and
fluids are coupled to each other by appropriate bound
conditions at the interface. The boundary conditions can a
be used to develop an equation of motion for the interfa
The fact that the interface is itself a dynamic quantity, ho
ever, creates prodigious problems from the numerical p
of view. If a conventional grid is used for each of the flu
components, then front-tracking routines are needed for
propriately adjusting the grid as the interface locati
changes and the CFD solvers need to be modified to re
the time-dependence of the grid itself. The problem is furt
complicated if the topology of the two fluids changes. A
example of this would be a drop of one fluid breaking o
and penetrating into the other fluid during a mixing ope
tion. While these processes are expected to occur in m
multiphase flows of practical interest, they add enormou
to the complexity of the calculation. Because of this, only
relatively small number of problems have been successf
tackled using a front-tracking approach@1#.

An alternative to front tracking is to incorporate two

*Pacific Northwest National Laboratory is operated for the U
Department of Energy by Battelle Memorial Institute under Co
tract No. DE-AC06-76RLO 1830.
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phase behavior directly into the equation describing the flu
This is the approach taken in lattice-Boltzmann simulatio
but it has also been employed to a limited extent in m
traditional CFD contexts@2,3#. Using a single equation to
model both phases has the considerable advantage of e
nating front tracking. Instead, the interface is modeled a
continuous function of the thermodynamic properties of
fluid. The interface is no longer a mathematically discre
boundary, but is broadened out into a continuous variation
fluid properties that typically extends over several grid sp
ings. This implies that the grid being used for the simulati
must be fine enough to resolve the interface, which will ty
cally be much narrower than most other features in the pr
lem. Furthermore, since the interface can wander aro
anywhere in the simulation, the grid must be relatively u
form throughout the fluid volume. This means that lattic
Boltzmann algorithms, most of which have been develop
for regular grids, are not a significant disadvantage with
spect to CFD algorithms, which can usually handle mo
general grid structures.

Several lattice Boltzmann algorithms have been dev
oped in the last few years for simulating multiphase a
multicomponent flows in isothermal systems. These inclu
the model of Shan and Chen@4,5#, which uses a nonloca
force in the algorithm to force the spontaneous formation
distinct liquid and vapor phases under appropriate con
tions, and the model of Swiftet al. @6#, which incorporates a
thermodynamically-based description of the two-phase s
tem into the simulation from the start. These models ha
been successfully used to model a number of multiph
and/or multicomponent flow problems under isothermal c
ditions. However, they have not been extended to include
effects of temperature and therefore cannot be used to in
tigate systems where thermal transport limits the rate
phase change. This includes many important problems s
as boiling, distillation, and the dynamics of phase separat
Until recently, incorporating thermal behavior into the mu
tiphase models has been hampered by the lack of a suit

.
-

5295 ©2000 The American Physical Society



in

m
ys
so

s

p
d
u
d
v

lity

o
He
ha
he

is
er

be
ar
a
ly

e-
e

ui
o
n

as
y
c
he

b

m
of
ro
ta

u
y

es

en
i

hi
ed
rs

ral
nd
-
tice
the

t
ns

-
f
ent

rst
ns

is-
ua-

ion

he

ion
a
ing
ce,
ey
del

is-
t

5296 PRE 61BRUCE J. PALMER AND DAVID R. RECTOR
lattice Boltzmann model for describing thermal flow, even
single-phase systems.

This paper will describe a lattice Boltzmann algorith
that is capable of modeling thermal flow in two-phase s
tems. The algorithm is a combination of the two-phase i
thermal model of Swiftet al. @6# and the two-distribution
model for thermal flow recently proposed by the authors@7#.
The two-distribution model treats the internal energy a
separate conserved scalar~similar to the density! that is mod-
eled by its own discretized Boltzmann distribution. This a
proach is fairly stable and easy to implement; it can han
arbitrary values of the Prandtl number, and an arbitrary eq
tion of state can be used. Several other algorithms base
using only a single discretized Boltzmann distribution ha
been limited by issues of numerical stability and the abi
to only simulate one value of the Prandtl number@8,9#.
These other algorithms also appear to be restricted to m
eling fluids with an ideal gas equation of state. Recently,
Chen, and Doolen developed a two-distribution model t
they obtained rigorously from a BGK approximation to t
Boltzmann equation@10#. However, this algorithm is also
restricted to systems with ideal-gas thermodynamics. Th
a major drawback when considering multiphase flow, wh
the equation of state must necessarily be nonideal.

The details of the thermal two-phase model are descri
in Sec. II. The hydrodynamic equations for the model
derived and used to determine the parameters that appe
the equilibrium distribution functions. The model not on
allows the formation of multiple phases, but also fixes
problem in the original two-distribution thermal model r
lated to the form of the thermal energy flux. Finally, th
results of simulations performed on a free-standing liq
film, evaporation of a liquid film from a heated plate, evap
ration of a droplet, and condensation of vapor in a chan
under the influence of gravity are described.

II. THERMAL TWO-PHASE MODEL

Lattice-Boltzmann simulations are an alternative to cl
sical fluid dynamics that attempt to model fluid flow b
simulating the behavior of the one-particle distribution fun
tion @11,12#. The original Boltzmann equation describes t
behavior of the one-particle distribution function,f (r ,v,t),
wheref represents the probability that a fluid particle can
found at the pointr at timet, moving with velocityv. If this
function is known, then local values of the mass, momentu
and temperature can be found by evaluating momentsf.
The other thermodynamic properties can then be found f
the density and temperature through the equation of s
Instead of a continuous functionf, the lattice Boltzmann dis-
tribution function is discretized so that space is divided
into a regular lattice and the velocities are represented b
finite number of displacements to neighboring lattice sit
The displacement vectors are denoted byDtei , where i
51,•••,b, ei is the displacement velocity,Dt is the discrete
timestep, andb represents the total number of displacem
directions. The magnitude of the displacement velocity
uei u5c and a zero displacement vectore0 is included in the
set to represent particles with zero velocity. Note that in t
formulationc has units of velocity. The derivations describ
below assume that the lattices represented by the vectoei
-
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are suitably symmetric so that the tensors( i 51
b eiei and

( i 51
b eieieiei are isotropic. As has been pointed out by seve

authors, suitably isotropic lattices are known only in two a
four dimensions@13,14#. However, three-dimensional simu
lations can be recovered by using a four-dimensional lat
and making the system completely uniform along one of
axes.

Two sets of discretized distributions,f i and Fi , are as-
signed to each site. The distributionf i models the transpor
of mass and momentum and satisfies the moment relatio

r5(
i 50

b

f i , ~2.1!

ru5(
i 51

b

ei f i , ~2.2!

wherer is the mass density andu is the macroscopic veloc
ity of the fluid. The distributionFi models the movement o
internal energy through the system and satisfies the mom
relation

re5(
i 50

b

Fi , ~2.3!

wheree is the specific energy per unit mass.
The distributions are updated at each time step by fi

performing a collision to obtain a new set of distributio
and then displacing thef i andFi along the vectorei to get a
new set of distributions at each site. The collisions and d
placement of the distributions are summarized by the eq
tions of motion

f i~r1Dtei ,t1Dt !2 f i~r ,t !52
1

tr
@ f i~r ,t !2 f i

eq~r ,t !#,

~2.4!

Fi~r1Dtei ,t1Dt !2Fi~r ,t !52
1

te
@Fi~r ,t !2Fi

eq~r ,t !#,

~2.5!

where ther are restricted to sites on the lattice andt is the
discrete time. The collision terms in the equations of mot
have the familiar Bhatnagar, Gross, and Krook~BGK! form
@15# and are characterized for the two distributions by t
dimensionless relaxation parameterstr and te . Because
there is no explicit coupling between the equations of mot
for the f i andFi , the total internal energy of the system is
conserved quantity, implying that there is no viscous heat
in the system. For many problems of practical importan
the contribution from viscous heating is small. Where th
are non-negligible, additional enhancements to the mo
will be required.

To completely describe the algorithm, the equilibrium d
tributions f i

eq andFi
eq need to be specified. Following Swif

et al. @6#, the equilibrium mass-momentum distributionf i
eq is

chosen to have the form
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f i
eq5A1

rD

bc2 eiaua1
rD~D12!

2bc4 eiaeibuaub

2
rD

2bc2 uaua1Eabeiaeib , ~2.6!

f 0
eq5A02

r

c2 uaua . ~2.7!

The spatial components are labeled by Greek indices and
Einstein convention of summing over repeated indices
used. The variableD is the dimension of the lattice and th
parametersA, A0 , and theEab will be determined later.
Similarly, the equilibrium energy distributionFi

eq is chosen
to have the form

Fi
eq5B1

reD

bc2 eiaua1
reD~D12!

2bc4 eiaeibuaub

2
reD

2bc2 uaua1Gaeia1Habeiaeib , ~2.8!

F0
eq5B02

re

c2 uaua . ~2.9!

Again, the parametersB, B0 , Ga , and Hab will be deter-
mined later. The extra termGaeia in the Fi

eq is new and is
used to correct the form of the thermal diffusion term.
turns out that this is essential for producing a stable temp
ture profile through the interface. The equilibrium distrib
tions are also required to satisfy the moment relations~2.1!–
~2.3!.

Once the equilibrium distributions have been specifi
the lattice-Boltzmann algorithm consists of the followin
steps:

~i! Calculater, u, and e at each site using the mome
relations~2.1!–~2.3!.

~ii ! Based on the values ofr and e, evaluate the param
eters in the equilibrium distribution functions via some as
unspecified relations.

~iii ! Evaluatef i
eq and Fi

eq at each site and complete th
collision step.

~iv! Translate thef i andFi .

To find expressions for the undetermined parameters in
equilibrium distributions, it is first necessary to calcula
what kinds of hydrodynamic equations are generated by
algorithm. The parameters are then determined by the
quirement that the hydrodynamic equations generated by
model match the equations of classical hydrodynamics.

To produce two-phase behavior, the hydrodynamic eq
tions are modified so that the scalar hydrostatic pressur
replaced by the pressure tensor. The pressure tensor mu
generalized to include off-diagonal terms that account for
nonisotropic stresses that occur when an interface is in
duced into the system. Following Swiftet al. @6#, the Cahn-
Hilliard form @16#

Pab5pdab1k~]ar!~]br!, ~2.10!
he
is

t
a-

,

t

e

is
e-
he

a-
is

t be
e
o-

p5p02kr]a]ar2
k

2
~]ar!~]ar! ~2.11!

is used in this work for the pressure tensor. The funct
p05p0(r,e) is the ordinary equilibrium pressure for a un
form system given by the equation of state andk is a param-
eter controlling the surface tension.

III. DERIVATION OF THE
HYDRODYNAMIC EQUATIONS

For multiphase systems the standard Chapman-Ens
multiple time-scale analysis@13# for deriving the hydrody-
namic behavior is no longer useful. The problem occurs
cause of the expected appearance of interfaces, which c
short-ranged changes in the density, internal energy, and
locity. These terms appear as higher-order terms in
Chapman-Enskog expansion where they are typically
carded.~The multiple time-scale analysis projects out t
long time-scale, long-wavelength behavior of the syste
The terms responsible for the interface do not show up
cause the interface is an inherently short-ranged phenome!
The Chapman-Enskog analysis does provide hydrodyna
equations that describe the single-phase behavior of
model, but does not give any information about the ex
terms necessary to create two coexisting phases. Instea
the Chapman-Enskog expansion, this paper will theref
use the method of successive approximations described
Swift et al. @6# to determine the hydrodynamic equations.
brief outline of this method is given below, most of the d
tails are provided in the Appendix.

This analysis begins by expanding the equations of m
tion about r and t to second order inDt. Equations that
express the behavior of the unknown distributionsf i andFi
in terms of the corresponding equilibrium distributions c
be obtained by recursively substituting these expansions
themselves. After truncating the expansions at second o
in Dt, the following equations are obtained:

2
1

Dttr
~ f i2 f i

eq!5
]

]t
f i

eq1eia]a f i
eq

2Dt
]

]t S tr2
1

2D S ]

]t
1eia]aD f i

eq

2Dteia]aS tr2
1

2D S ]

]t
1eib]bD f i

eq ,

~3.1!

2
1

Dtte
~Fi2Fi

eq!5
]

]t
Fi

eq1eia]aFi
eq

2Dt
]

]t S te2
1

2D S ]

]t
1eia]aDFi

eq

2Dteia]aS te2
1

2D S ]

]t
1eib]bDFi

eq .

~3.2!
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The moment relations can be applied to Eqs.~3.12! and
~3.13! to get equations of motion for the macroscopic co
tinuum variablesr, u, ande. The requirement that the con
tinuum equations generated by Eqs.~3.1! and~3.2! match the
usual hydrodynamic equations as closely as possible, as
as satisfying the moment relations~2.1!–~2.3!, puts con-
straints on the undetermined coefficients in the equilibri
distribution functions. The constraint relations can be solv
to get the following expressions for the coefficients:

A05r2Ab, ~3.3!

A5
D

bc2 Fp02k(
g

r]g]gr2kS 1

2
2

1

D8D(g
~]gr!~]gr!G ,

~3.4!

Eab5
D~D12!

2bc4 k~]ar!~]br!, aÞb ~3.5!

Eaa5
D~D12!

2bc4 Fk~]ar!~]ar!2
k

D8 (g
~]gr!~]gr!G ,

~3.6!

B5
D

bc2 eFp02k(
g

r]g]gr2kS 1

2
2

1

D8D(g
~]gr!~]gr!G ,

~3.7!

B05re2Bb, ~3.8!

Hab5eEab , ~3.9!

Ga5
D

bc2 FDtS te2
1

2D Pab]be2k]aTG . ~3.10!

The actual physical dimension of the system is denoted
D8 and may be smaller than the lattice dimensionD on
which the simulation is originally developed. For two
dimensional systems, theEaa are explicitly

Exx52Eyy5
D~D12!

4bc4 k@~]xr!22~]yr!2#. ~3.11!

The variablek appearing in Eq.~3.21! is the thermal conduc
tivity and T is the local temperature.

To second order inDt, the hydrodynamic equations gen
erated by these equilibrium distributions are

]

]t
r1]arua50, ~3.12!

]

]t
rua1]bruaub52]bPab2]az]b~rub!

2]ajub]be1]bn]b~rua!

1]bn]a~rub!1]an]b~rub!,

~3.13!

]

]t
re1]areua5]ak]aT. ~3.14!
-

ell

d

y

The transport coefficientsz, j, and n appearing in the mo-
mentum equation are given by

z5DtS tr2
1

2D ]p0

]r
, ~3.15!

j5DtS tr2
1

2D ]p0

]e
, ~3.16!

n5DtS tr2
1

2D c2

D12
. ~3.17!

The coefficientn is the kinematic viscosity, but the coeffi
cientsz andj have no counterparts in classical hydrodyna
ics and must be considered as artifacts of the latti
Boltzmann method. Similar terms were also found for t
single-phase thermal model developed by the authors an
Swift et al. in their multiphase isothermal model@6#. For a
fixed grid spacing, the time stepDt can be decreased b
increasingc. If tr is simultaneously adjusted so thatn re-
mains fixed, then the coefficientsz andj vanish in the limit
of small time step. This occurs becausen is proportional to
c2 while z and j are not. Numerical comparison of lattice
Boltzmann simulations against known analytic results us
the single-phase thermal model suggest that the contribu
from these extra dispersion terms is small even for lar
values of the time step@7#.

Like the original isothermal two-phase model of Sw
et al., Eq. ~3.13! is not Galilean invariant@6#. For the low-
speed flows described here, this should not be a problem@6#.
For higher speed flows, Holdychet al.have developed a cor
rection that removes the non-Galilean terms from the m
mentum equation~at least to low order! @17#. Although it has
not been done in this paper, the correction can easily
applied to this algorithm and should make it possible
simulate higher speed multiphase flows. The correct
scheme may also be used to eliminate the terms proporti
to z andj in Eq. ~3.13!.

From Eq.~3.10! it is clear thatte andk can be treated as
independent parameters. This is the approach taken in
simulations described in this paper. The parameterte has no
effect on the hydrodynamics, although it may affect the n
merical stability of the algorithm. Alternatively,te could be
fixed so that theGa terms only correct the hydrodynamics
eliminate spurious energy flows due to gradients in the d
sity. If the local energy density is considered to be a funct
of r andT then Eq.~3.10! can be rewritten as

Ga5
D

bc2 FDtS te2
1

2D PabS CV]bT1
]e

]r
]br D2k]aTG ,

~3.18!

whereCV is the constant volume specific heat. The value
te can be chosen so that the two terms proportional to
gradient ofT approximately cancel

k5DtS te2
1

2DCV

1

D8
Tr Pab . ~3.19!

For a single phase, wherePab;p0dab , the temperature
terms in Ga cancel exactly and the remaining term is ju
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proportional to a gradient of the density. This makes sen
since the hydrodynamic equation for the original tw
distribution model, in which the thermal energy flux is wr
ten as the gradient of the energy, already contains the t
perature gradient term. The only correction that is neede
to cancel out the unecessary term proportional to a grad
of the density. For an ideal-gas system, theGa vanish alto-
gether, as expected. Becausee is only a function ofT for this
case, there is no need for any hydrodynamic corrections

IV. NUMERICAL IMPLEMENTATION

The numerical implementation of this algorithm
straightforward in most respects. The results described ab
have been derived assuming that the lattice has suitable
ropy properties@13#. These include the hexagonal lattice
two dimensions and the hypercubic face-centered~HCFC!
lattice in four dimensions. The HCFC lattice can be p
jected down onto the orthogonal lattice in two dimensio
(d2q9 using Qian’s notation@12#! and thed3q19 lattice in
three dimensions.~Thed indicates the dimension of the pro
jected lattice andq signifies the number of independent com
ponents in the distribution, including the zero velocity co
ponent.! The simulations reported here were all perform
on the d2q9 two-dimensional lattice. Boundary condition
were implemented using the methods described in a prev
paper@7#.

The equilibrium distribution functions require the evalu
tion of both first and second derivatives of the density a
first derivatives of the specific energy and temperature.
first and second derivatives of the density are needed
evaluate the coefficientsEab andHab . The first derivatives
are computed using the formula

]ar5
1

( iwi
(

i
wi S Dr

Dxa
D

i

~4.1!

where (Dr/Dxa) i is the single-sided finite difference ap
proximation to the first derivative with respect to the coor
nate directionxa . It is calculated from the difference in den
sity at the pointsr and r1Dtei and has the form

S Dr

Dxa
D

i

5
1

Dtei•n̂a
@r~r1Dtei !2r~r !#. ~4.2!

The unit vectorn̂a points along thea coordinate axis. Only
the (Dr/Dxa) i that can be evaluated and for whichei•n̂a is
nonzero are included in the summation in Eq.~4.1!. This
form is useful for points located on boundaries wherer(r
1Dtei) may not be defined for allei . The weightswi that
appear in Eq.~4.1! reflect the total number of vectors in th
original lattice that are projected down into the lowe
dimensional lattice. For thed2q9 lattice,wi54 for vectors
along the axial directions andwi51 for vectors along the
diagonal directions.

The second derivatives are evaluated using the follow
finite-difference formula:
e,

m-
is
nt

ve
ot-

-
s

-

us

d
e
to

-

g

] f 0,0

]x2 1
] f 0,0

]y2 5
1

6h2 @ f 1,11 f 21,11 f 1,211 f 21,2114 f 1,0

14 f 21,014 f 0,114 f 0,21220f 0,0#, ~4.3!

whereh is the lattice spacing and the subscripts on the fu
tion f indicate displacements of6h in the x or y directions.
This equation is obtained by generalizing a standard appr
mation of the two-dimensional Laplacian to the fou
dimensional HCFC lattice and then projecting the result b
down to the two-dimensionald2q9 lattice. Equation~4.3!
cannot be applied directly to boundary points, because no
the r(r1Dtei) are defined. For this study, a reflectiv
boundary condition was used to assign densities to neigh
ing sites that reside in the interior of solid boundaries~for
boundary sites at corners or along diagonals, this is d
separately for each of the coordinate directions!. The second
derivative of the density could then be calculated using
~4.3!.

The first derivatives of the specific energy and tempe
ture that appear in the definition of theGa were handled
slightly differently. The contribution of theGa to the equi-
librium distribution functionFi

eq has the form

Gaeia5
D

bc2 F S te2
1

2D ~pDteia]ae1k~]br!

3~]be!Dteia]ar!2
k

Dt
Dteia]aTG . ~4.4!

Note that the explicit form of the pressure tensor has b
substituted into Eq.~3.10! in writing Eq. ~4.4!. The gradient
terms Dteia]ae, etc. really represent the projection of th
gradient ofe, r, and T onto the displacement vectorDtei .
Instead of using Eq.~4.1! for the first derivatives, these ar
much better approximated as

Dteia]ae5e~r1Dtei !2e~r !. ~4.5!

Similar expressions are used for the directional derivative
r andT. The remaining derivatives ofr ande appearing in
Eq. ~4.4! are evaluated using Eqs.~4.1! and ~4.2!. The ap-
proximation represented by Eq.~4.5! is essential for describ
ing the behavior of a two-phase system; however, for sing
phase compressible flow, the approximation represented
Eq. ~4.1! is sufficient.

V. RESULTS

All simulations reported here used the van der Wa
equation of state

p05
rRT

12br
2ar2 ~5.1!

to model the thermodynamic properties of the fluid. T
units of temperature are chosen so that the ideal gas con
is R51. The specific energy can be derived in a straightf
ward way from Eq.~5.1! using the thermodynamic relatio
@18#
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S ]U

]V D
N,T

5T S ]p

]TD
N,V

2p, ~5.2!

where U is the total internal energy,N is the number of
particles, andV is the volume of the system. The result is

e5
3

2
RT2ar. ~5.3!

Equations~5.1! and ~5.3! are all that are needed to com
pletely specify the thermodynamics@Eq. ~5.3! can easily be
inverted to obtainT as a function ofe and r#. The critical
temperature and density for the van der Waals fluid areTc
58a/(27Rb) andrc51/(3b) @19#. The parametersa andb
for all simulations were chosen to have the valuesa59/8
andb51/3, which sets the critical temperature and press
at 1. Additional parameters that needed to be set for
simulations were the relaxation parameterstr and te , the
thermal conductivityk, the surface tension parameterk, and
the lattice speedc.

The first simulation using this model was just a simp
interface confined between two walls. The simulations w
performed on a grid of 10335 lattice sites, with periodic
boundary conditions imposed on the short axis. The sim
tions were therefore effectively one dimensional. The sim
lation volume is actually 100 lattice units in length, plus
extra lattice point to include the origin. Two additional la
tice sites are required at either end of the simulation volu
to implement boundary conditions. Reflective boundary c
ditions for the mass flux were applied at either end of
system and constant temperature boundary conditions w
applied for the specific energy. The reduced temperatur
either end of the system was set atT50.8 and the surface
tension parameter in the Cahn-Hilliard equation was cho
to bek50.4. The spacing on the square grid,Dx, was set to
1.0 and the time step was chosen to beDt50.2. The particle
speedc is completely determined by the choice ofDx andDt
and is equal toc5&Dx/Dt. The factor of& comes from
the fact that the nearest-neighbor vectors in the original fo
dimensional HCFC lattice correspond to vectors runn
along the diagonals of the two-dimensionald2q9 lattice.
The relaxation parameterstr and te were both set equal to
1.0 as was the thermal conductivityk. Enough mass was
confined in the system to force it to form a two-phase sys
with an interface. The simulation was then run until all v
locity and thermal transients had damped out. A plot of
resulting density and temperature profile in the vicinity of t
interface is shown in Fig. 1. The most important feature
the temperature profile is that it is absolutely flat through
interface, even though the temperature is allowed to v
freely and is not imposed on the system externally. Ot
simulations, in which the interface was oriented at 45° to
grid axes, showed some deviations from a constant temp
ture in the vicinity of the interface but these appear to
small ~the magnitude of the deviation was sensitive to
value ofk used in the simulation, but was less than 1% in
worst case!. Although the dynamics of this system are n
very interesting, it is a rigorous test of the model. Seve
early versions of this algorithm were unable to simulate
simple two-phase fluid profile.
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Another test of the algorithm is to check whether or n
the normal component of the pressure tensor is cons
through the interface. This is a mechanical condition
quired by a system at equilibrium. The normal and tangen
components of the pressure tensor are displayed in Fig.
can be seen that the normal component of the pressure te
is constant through the interface while the tangential com
nent shows a large deviation from uniformity. This deviati
gives rise to the surface tension.

To check that the model correctly reproduces the equi
rium thermodynamics of the system, a series of simulati
of the liquid-vapor interface at different temperatures we
performed and used to reconstruct the liquid-vapor ph
diagram. The results of these simulations, along with
exact result based on the equation of state, are shown in
3. The agreement between the simulations and the ana
result is nearly perfect.

FIG. 1. Temperature and density profiles for a free-stand
liquid film at T50.8. The solid line is density; the dotted line
temperature.

FIG. 2. Normal and tangential components of the pressure
sor for a free-standing liquid film atT50.8. The solid line is the
tangential component; the dotted line is the normal component
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Simulations of a thin liquid film evaporating from
heated plate were used to verify that the the ratio of the h
flux into a liquid-vapor interface over the mass flux out
the interface is equal to the specific enthalpy of vaporizati
The specific enthalpyh for the van der Waals equation o
state is

h5er2p5
3

2
RTr2

rRT

12br
. ~5.4!

The specific enthalpy of vaporizationhvap is just hvap5hg
2hl , wherehg andhl are the specific enthalpies of the g
and liquid phases. The simulations to test the relation
tween the fluxes and enthalpy of vaporization were done
a 5335 lattice. Periodic boundary conditions were aga
used in the short dimension so that the simulation is eff
tively one dimensional. The time step was increased slig
to Dt50.25, but all other parameters were the same as in
previous example. A constant heat flux boundary condit
was imposed at one end of the simulation cell for the ene
and a reflective boundary condition was used for the m
Constant temperature and constant pressure boundary c
tions were specified at the other end of the simulation
and the initial distribution of mass was chosen so that ab
half the simulation cell was liquid and half the cell was v
por. The liquid half of the cell corresponded to the side w
the constant heat flux boundary condition and the vapor
corresponded to the constant temperature boundary co
tion. The initial temperature throughout the system was
equal to the same temperature used in the constant tem
ture boundary condition and the liquid and vapor densi
were chosen to be equal to the liquid and vapor densitie
the coexistence point of the van der Waals liquid at the ini
temperature. The pressure specified in the constant pres
boundary condition was set equal to the vapor pressure o
van der Waals liquid at the coexistence point. Under th
conditions, the liquid film evaporates steadily after the de
of some initial transients. The mass flux out of the system

FIG. 3. Comparison of liquid-vapor phase diagram calcula
from simulations of a free-standing film~dots! and the analytic
result ~solid line!.
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the end corresponding to the constant temperature-con
pressure boundary can be calculated. A plot of mass flux
heat flux should be a straight line with a slope that is equa
the specific enthalpy. A plot of heat flux vs mass flux f
several temperatures is shown in Fig. 4. The straight li
included in the figure are the predicted mass fluxes base
the enthalpy of vaporization at the specified temperature.
plot shows almost perfect agreement between the predi
and measured mass fluxes.

Simulations of an evaporating drop were performed us
a 2033203 size lattice. A circular boundary of radius 10
was inscribed inside the original square grid and was use
specify both the temperature and pressure for the simulat
The circular boundary was used to minimize the effect of
discrete lattice on the evaporation of the drop. The time s
for this simulation was set atDt50.2 and the thermal con
ductivity was increased tok52.0. A liquid drop of radius 40
was equilibrated with its vapor inside the circular bounda
at a temperature of 0.8. The density at the boundary
initially set equal torg50.239, which is the equilibrium va
por density atT50.8. The system was then equilibrated f
500 steps, after which the density at the boundary was slo
lowered over the next 500 steps to a value ofrg50.200. The
temperature at the boundary remained at a value of
throughout the simulation. These boundary conditions
sulted in the slow evaporation of the droplet over time.

The behavior of the temperature profile at different tim
is shown in Fig. 5. The initial response is a rapid cooling
the vicinity of the interface as evaporation draws energy
of the drop. The temperature inside the drop then contin
to cool as energy flows out of the interface due to additio
evaporation at the drop surface. The initial lowering of t
constant density boundary condition appears to resul
some strong transients in the simulation; possibly a pres
wave that travels through the drop. These transients ca

d FIG. 4. Comparison of simulated and predicted mass fluxes
function of energy flux for evaporation of a liquid film on a heat
plate. The lines are the predicted fluxes, the symbols are the s
lated fluxes. Three different temperatures at the vapor side bo
ary are shown.~Circle! T50.85. ~Square! T50.80. ~Diamond! T
50.75.
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the temperature inside the drop to change quickly and
formly from a value of 0.8 to a slightly lower value of 0.79
The value of the temperature at the interface also appea
rise slightly as the drop evaporates. This may be caused
slight increase in the vapor density in the vicinity of the dr
as the evaporation proceeds. Figure 6 shows some profile
the density at different times. As expected, the location
the interface moves inward as material from the drop eva
rates.

Contour plots of the fluid density and the temperatu
profile at the end of the simulation are shown in Fig. 7. T
plots show that the temperature reaches a minimum at
drop surface and then gradually increases as one move
ther into the interior of the drop or towards the circul
boundary. Some small nonunformities in the temperat
contours are evident in the region near the drop surfa
These appear to be due to small, spurious velocities
show up near the interface if the interface is not orien
along the axis directions. Similar spurious velocities we

FIG. 5. Temperature profiles for evaporating drop at differ
times.

FIG. 6. Density profiles for evaporating drop at different time
i-
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noted by Swiftet al. @6# in their original isothermal two-
phase model.

Finally, results are presented for simulations of conden
tion in a channel under the influence of gravity. Gravity c
be introduced into the simulation by modifying the distrib
tion f i using the formula

f i85 f i1
r̄D

bc2 ei•g, ~5.5!

wherer̄ is equal to@r(r )1r(r1ei)#/2 andg is the gravity
vector @7#. The lattice for these simulations was 1003400
lattice units in size with gravity oriented along the long ax
of the channel. The top of the channel was maintained
constant vapor density of 0.236, zero flux boundary con
tions were imposed along the sides and bottom of the ch
nel. The temperature boundary conditions were somew
more complicated. The top of the channel was maintaine
a fixed temperature ofT50.8. The first 20 lattice sites from
the top of the channel along the sides, 1–20, were also
at a temperature ofT50.8. The next ten lattice sites, 21–3
were linearly ramped down fromT50.8 to T50.75. The
remaining lattice sites on the sides and bottom of the chan
were held at a temperature of 0.75. Under these conditio
gas flows in from the top of the channel and condenses
the sides. The initial condition consisted of a coating of l
uid along the sides of the channel approximately 15 un
thick, starting at the beginning of the cool portion of th
channel and extending to the bottom. The top of the film
the transition point between hot and cold surfaces was
tially rounded to prevent large transients due to surface
sion effects. The bottom central portion of the channel w
initially free of liquid. The magnitude ofg was set to 0.0001
and the remaining parameters were the same as for
evaporating drop simulation.

Figure 8 shows contour maps of the density and temp
ture distributions after 20 000 and 60 000 steps. After 20 0
steps, the liquid has started to sag down towards the bot
and is beginning to close off the dry gap that was origina
present at the bottom of the channel. After 60 000 steps,
dry gap has been pinched off and the bottom of the chan
is completely coated with liquid. The temperature profil
inside the channels are also shown. The temperature pro
vary smoothly across the interface and it is difficult to sp
exactly where the interface is, based solely on examining
temperature behavior. The vapor at the bottom of the chan

t

.

FIG. 7. Gray-scale contour plots of density and temperature
an evaporating drop. Dark regions signify high values for dens
and low values for temperature.~Left! density.~Right! temperature.
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shows a cold spot at shorter times due to the fact that it i
direct contact with the cold surface at the bottom. The te
perature plot at longer time, however, indicates that the
por has heated up slightly in the bottom of the channel an
warmer than the vapor coming in at the top. This is due
the fact that for these conditions, the vapor density is qu
large and the effect of gravity on the vapor phase densit
significant. The density of the vapor increases noticeably

FIG. 8. Gray-scale contour plots of density and temperature
vapor condensing in a channel. Dark regions signify high values
density and low values for temperature.~Top! density ~left! and
temperature~right! after 20 000 steps.~Bottom! density ~left! and
temperature~right! after 60 000 steps.
in
-
-

is
o
e
is
s

one moves down the channel, from 0.236 at the top to 0.
near the bottom. To remain in equilibrium with the high
vapor phase densities, the temperature at the liquid-gas in
face must increase near the bottom of the channel. This
sults in a general warming of the vapor phase. The energy
heating up the vapor comes both from mechanical comp
sion of the gas as it moves down the channel and the rel
of energy at the vapor-liquid interface as the gas conden

VI. CONCLUSIONS

A lattice Boltzmann algorithm for simulating therma
multiphase flows has been described and the macrosc
hydrodynamic equations generated by the model have b
derived. Expressions for the macroscopic viscosity and th
mal conductivity in terms of the microscopic parameters
the model are also obtained. The algorithm can handle
arbitrary equation of state and correctly reproduces the fo
of the heat current, even for a nonideal fluid. The model
been tested on several systems to verify that it can reprod
the expected behavior for thermally driven phase change

Simulations of a free-standing film showed that the alg
rithm can reproduce a constant thermal profile through
vapor-liquid interface. The free-standing film can also
used to calculate the coexistence behavior of the fluid a
function of temperature. This can then be compared to
predictions based on the equation of state. For a van
Waals fluid, complete agreement is found.

Simulations of evaporation of a thin liquid film from
heated plate demonstrated that a thermally limited ph
change obeys the correct overall energy and mass bal
relations. The total amount of material that can evapor
from a surface is related to the heat flux into the surface
the enthalpy of vaporization. Simulations have verified th
the ratio of the heat flux into the interface divided by t
mass flux of gas out of the interface is equal to the spec
enthalpy of vaporization.

Simulations of an evaporating drop show an initial rap
decrease in the surface temperature of the drop followed
slower development of the temperature profile both ins
and outside the drop. The radius of the drop also decreas
evaporation proceeds. Finally, simulations of condensa
inside a channel show significant accumulation of fluid in t
channel as well as distortion and movement of the liqu
vapor interface. These simulations demonstrate that the t
mal two-phase flow algorithm presented here contains
basic physics for simulating the dynamics of therma
driven phase changes. This includes many important p
cesses such as boiling, distillation, and reactions in mu
phase systems.

As it stands, the thermal two-phase model is applicable
systems near the critical point and to systems where sur
tension effects are large, such as flow in microchannels
porous media. The interface thickness generally increa
with increasing surface tension in the Cahn-Hilliard mod
so a larger grid spacing can be used at higher surface
sions. The interface also broadens as the system approa
the critical point. For systems with low surface tension, t
interface becomes narrow and the grid spacing must be m
small, resulting in extremely large grids. Experience with t
model also suggests that problems arise at lower temp

r
r
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5304 PRE 61BRUCE J. PALMER AND DAVID R. RECTOR
tures, where the ratio of the liquid to vapor density becom
extremely high and the interface again represents a r
change in density over a short distance. Lattice-Boltzm
algorithms have recently been described which do not
quire a regular grid@20,21# and open up the possibility o
using a grid with higher resolution in the region of the inte
face and low resolution elsewhere. Such a grid would eli
nate the excess cells in regions outside the interface
occur if regular grids are used. Grid refinement schem
such as that proposed by Filippova and Ha¨nel @21#, are par-
ticularly promising in this regard.

APPENDIX

The purpose of this appendix is to provide some of
details in the derivation of the coefficients represented
Eqs.~3.3!–~3.10!. Because the equilibrium distribution func
tions satisfy Eqs.~2.1!–~2.3!, the undetermined paramete
appearing in the equilibrium distributions must be related

r5Ab1A01Eaa

bc2

D
, ~A1!

re5Bb1B01Haa

bc2

D
. ~A2!

This can be verified by direct calculation and using the
tice vector relation@13#

(
i 51

b

eiaeib5
bc2

D
dab .

Use is also made of the property that sums over odd n
bered products of lattice vectors vanish. Summing Eq.~3.1!
over i and making use of the moment relations gives
following equation for the density:

]

]t
r1]arua5DtF ]

]t S tr2
1

2D S ]

]t
r1]aruaD

1]aS tr2
1

2D S ]

]t
rua1]b(

i 51

b

eiaeib f i
eqD G .

~A3!

Multiplying Eq. ~3.1! by ei and then summing overi leads to
the momentum equation

]

]t
rua1]b(

i 51

b

eiaeib f i
eq

5DtF ]

]t S tr2
1

2D S ]

]t
rua1]b(

i 51

b

eiaeib f i
eqD

1]bS tr2
1

2D S ]

]t (i 51

b

eiaeib f i
eq

1]g(
i 51

b

eiaeibeig f i
eqD G . ~A4!
s
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n
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-
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Finally, summing Eq.~3.2! over i gives the equation of mo
tion for the energy

]

]t
re1]a(

i 51

b

eiaFi
eq

5DtF ]

]t S te2
1

2D S ]

]t
re1]a(

i 51

b

eiaFi
eqD

1]aS te2
1

2D S ]

]t (i 51

b

eiaFi
eq1]b(

i 51

b

eiaeibFi
eqD G
~A5!

From Eqs.~A3!–~A5!, it can be seen that to lowest orde
in Dt, the hydrodynamic equations for this system are

]

]t
r1]arua501O~Dt !, ~A6!

]

]t
rua1]b(

i 51

b

eiaeib f i
eq501O~Dt !, ~A7!

]

]t
re1]a(

i 51

b

eiaFi
eq501O~Dt !. ~A8!

Equations~A6! and ~A7! can be used in the mass conserv
tion equation~A3! to eliminate the terms on the right-han
side. This implies that to second order inDt, the mass con-
servation equation is given by Eq.~3.12!. Similarly, the mo-
mentum equation~A4! can be reduced to

]

]t
rua1]b(

i 51

b

eiaeib f i
eq

5Dt]bS tr2
1

2D S ]

]t (i 51

b

eiaeib f i
eq

1]g(
i 51

b

eiaeibeig f i
eqD ~A9!

Using the explicit definition off i
eq and the lattice vector

identity @13#

(
i 51

b

eiaeibeigeid5
bc4

D~D12!
~dabdgd1dagdbd1daddbg!,

the sums over thef i
eq can be evaluated to get the expressio

(
i 51

b

eiaeib f i
eq5A

bc2

D
dab1ruaub1

bc4

D~D12!
~Eggdab

1Eab1Eba!, ~A10!

(
i 51

b

eiaeibeig f i
eq5

rc2

D12
~dabug1dagub1dbgua!.

~A11!
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Comparing the momentum equation with Eqs.~A9! and
~A10! suggests that the parametersA and theEab can be
related to the pressure tensorPab via

S A
bc2

D
1

bc4

D~D12!
EggD dab1

bc4

D~D12!
~Eab1Eba!

5Pab . ~A12!

This equation, in combination with Eq.~A1!, can be used to
determineA, A0 , and theEab .

Equations~A1! and ~A12! are not sufficient to uniquely
determine the quantitiesA, A0 , andEab , so there is some
flexibility in choosing one of these parameters. One possi
ity is to chooseA0 to have the form given by Eq.~3.3! and to
chooseEab5Eba. It follows from ~A1! that theEab must
satisfy the relation

(
g

bc2

D
Egg50. ~A13!

To avoid confusion in the remaining derivation of the co
ficientsA andEab , the summations over spatial indices ha
been included explicitly. From Eq.~A12!, the Eab for a
Þb have the form given by Eq.~3.5!. For a5b, it follows
from Eq. ~A12! that theEaa must also satisfy the relation

A
bc2

D
1

2bc4

D~D12! S 1

2 (
g

Egg1EaaD
5p02k(

g
r]g]gr2

k

2 (
g

~]gr!~]gr!

1k~]ar!~]ar!. ~A14!

Simultaneously solving Eqs.~A13! and ~A14! for A and the
Eaa leads to Eqs.~3.4! and ~3.6!.

The equilibrium distributionf i
eq is now completely deter-

mined and the momentum equation to orderDt becomes

]

]t
rua1]bruaub

52]bPab1Dt]bS tr2
1

2D F ]

]t
Pab1

]

]t
ruaub

1
c2

D12
]gr~dabug1dagub1dbgua!G . ~A15!

The ]ruaub /]t term is second order inu in the dissipation
term. It is assumed to be of higher order and is dropped.
remaining time derivative ofPab can eventually be con
verted into an expression containing only spatial gradie
However, this cannot be done until the analysis of the ene
equation is completed.

Using the first-order equation for the energy~A8!, Eq.
~A5! can be simplified to
l-

-

e

s.
y

]

]t
re1]a(

i 51

b

eiaFi
eq

5Dt]aS te2
1

2D S ]

]t (i 51

b

eiaFi
eq1]b(

i 51

b

eiaeibFi
eqD

~A16!

The sums over the distribution functions can be evalua
using the definitions of theFi

eq to get

(
i 51

b

eiaFi
eq5reua1Ga

bc2

D
, ~A17!

(
i 51

b

eiaeibFi
eq5B

bc2

D
dab1Hgd

bc4

D~D12!
~dabdgd1dagdbd

1daddbg!1reuaub . ~A18!

Anticipating the final results, the parametersGa are assumed
to be of orderDt. After dropping terms of orderu2 in the
dissipation terms, the energy equation can then be writte

]

]t
re1]areua

52]aGa

bc2

D
1Dt]aS te2

1

2D F ]

]t
reua1]a

bc2

D
B

1
bc4

D~D12!
~]aHbb1]bHab1]aHba!G . ~A19!

Using the first-order equations, the time derivative in t
dissipation term can be rewritten as

]

]t
reua52e]bruaub2e]bPab2ua]breub

2ua]bGb

bc2

D
1eua]brub . ~A20!

Using Eq.~A20! in Eq. ~A19! leads to the energy equation

]

]t
re1]areua

52]aGa

bc2

D
1Dt]aS te2

1

2D F]b

bc2

D
Bdab2e]bPab

1
bc4

D~D12!
~]aHbb1]bHab1]bHba!G . ~A21!

The terms of orderu2 and the terms proportional toGa in the
dissipation terms are of higher order and are dropped
good choice forB and theHab is to require them to satisfy
the relation

S B
bc2

D
1

bc4

D~D12!
HggD dab1

bc4

D~D12!
~Hab1Hba!

5ePab . ~A22!
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The similarity between this equation and Eq.~A12! immedi-
ately leads to the expressions given in Eqs.~3.7!–~3.9!. The
energy equation can now be rewritten as

]

]t
re1]areua52]aGa

bc2

D
1Dt]aS te2

1

2D Pab]be.

~A23!

The dissipation term should be proportional to the gradi
of temperature. This requirement leads directly to Eq.~3.10!.
The energy equation then reduces to Eq.~3.14!, which is the
traditional form in the absence of viscous heating.

The results for the energy equation can be used to el
nate the time derivative of the pressure tensor in the mom
tum equation~A15!. To lowest order inDt, the energy equa
tion is
s

ys
t

i-
n-

]

]t
re1]aruae501O~Dt !. ~A24!

Because the time derivative of the pressure tensor is alre
in a dissipation term, the gradients inPab can be considered
to be contributing to higher order and are dropped. The p
sure tensor reduces to

Pab;p0dab .

The time derivative of the pressure can then be written a

]

]t
Pab52

]p0

]r
]arua2

]p0

]e
ua]ae. ~A25!

This can be combined with Eq.~A15! to give Eq.~3.13!.
tt.
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